hotfox 发表于 2020-11-26 17:06:26

字符串连接问题?

A,B,C,D单元格,其中A,C必填,当B为空时,D=A-C,否则D=A-B-C
请问,如何设置公式?

155773470086482 发表于 2020-11-26 17:31:34

解决方案有两种 1公式:在D单元格设置公式 =IF(D="",A-C,A-B-C)
                         2填表公式 ABC值变化 赋值:在执行条件处 填写对应的条件

hotfox 发表于 2020-11-27 08:51:23

155773470086482 发表于 2020-11-26 17:31
解决方案有两种 1公式:在D单元格设置公式 =IF(D="",A-C,A-B-C)
                         2填表公式 ABC值 ...

IF 出错,好像和Excel中不一样,填表公式不知如何设置?

155773470086482 发表于 2020-11-27 09:40:45

本帖最后由 155773470086482 于 2020-11-27 09:43 编辑

我测试的结果attach://31838.png

155773470086482 发表于 2020-11-27 09:47:49

但是看你这个逻辑,不是直接就可以写成D=A-B-C吗?B为空或不为空不影响结果

hotfox 发表于 2020-11-27 10:05:09

hotfox 发表于 2020-11-27 08:51
IF 出错,好像和Excel中不一样,填表公式不知如何设置?

CONCATENATE2("连接字符",单元格1,单元格2,单元格3)
这个函数可以解决问题

hotfox 发表于 2020-11-27 10:08:28

155773470086482 发表于 2020-11-27 09:47
但是看你这个逻辑,不是直接就可以写成D=A-B-C吗?B为空或不为空不影响结果 ...

:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOwAAAAxCAYAAADZc0XlAAAJWElEQVR4Ae1cS47bOBDt+5/CJ9AFtB4ESjCbJPAiQYCknQT5bHwDDp7lJz2WSYpy27LUUw0QRVYVi6zPI6lOzzwdj8fgzWPgNbCNGnjyRG0jUZ4nzxNqwAHrLwx/YW2oBhywG0qW37J+yzpgHbB+w26oBhywG0qW37B+wzpgHbB+w26oBh4G2H/+fQ7ePAZeA/Nq4CGARZL8eefPO6+B+TWwOGAJ1uA/HgGPwOwIOGBnh8wneAQeFwEH7ONif9OVn56eBnvskw6CTId6pBm1V8Heuo8vBiwCwFbzTVL7JKZNUlYLx6D8IQ9j9inXMXk6j307l/Nq+FaHNlPr0S6pnat8K6NdS3Ud9kmtrh1Tj9TK7Rh62ihP8ShLUdVHnz/KJ69EVV/tcE4tj/prpy8CLIMFoGq/BNwawNogc0zKoOo41Vce5tSOqUdq59bw7Rwdcz6pyrSvcuWjz5+cjuVT31LqkVq5jq0Ox6TUtWPySa2cY9KcHvmkU/qQW53cXPLXTm8G2BJIVaaAZUCVImC1QVY92tD5Kk8lQueoPDWPPFLqq42SjPqgVk95KtO+6kzZUvkt+3Y/tG35dkw90il5rV7JDmWktEma41O+VnoVYOGsbQrKUl8BmwtKLpiWr2PuBzbJJ02tQxmp6uR44FuZ8lTGPum19jkvZQeyHJ/zqAM9bSqv7deuNWVvyg73+RI7XIPU2srxrd7axlcBFoBkUEvgTMnuCVgEl/tiPxdwJoxU9Uo8K+MYlH1dW3lco8QryThfaUpf5bfsT601JedebqWXs6N87XN90BxfddbYfyhgETTbSsG0QdYx+7RXskMZdTmXCbJj6lOulLq0RRnHpOSDcs4UL6dbM091btVP7Zu2SzLqkNbqTumV5JBp49qkpbnUWSO9CrAaCN6i5E3dvtfcsAwuKQOp41RfeZij41zf6tWuZefdwr7a4D4srdGxc64d27U4Jq21a/U5JqUdOyaf1MrtGHopXolP22ulLwKsglWBiiBRZmkNYBlQ2LEBJ0/5lleSqW0mhfNVlrNR0uUc1VGb2qeu5elc9pVC3/6oLSu7dpyzmdqL8tjnunPsYA7n23l2rPY5hzylKVnOls5ba/8mgE2BFUGxYMW4FrBrDdha93XrIryVvddq51F1cDVgFYxICpoCV+Xad8A+KtX16zrI6mO1tOZswCo4FYi1fQfs0in29V5TBGYBlrdoLThTeg7Y11Q+7svSEZgF2BQA5/IcsEun2Nd7TRFYHLAAOEE7F+yuP/8/ePaYva6YPQSwBC2A681j4DVQXwMPA6yf/K/r5Pd8LpNPB+yG/o95DoplQLHmODtgHbDJP3BZc9H+n/fmgHXAOmA3VANPu90uePMYeA1sowb8ht3Q6fp/fgq67/33uwPWAetP4g3VgAN2Q8nyW8Z/S+yAdcD6DbuhGnDAbihZfsP6DeuAdcD6DbuhGpgF2D9//oS/f/8GUO1v7eSHDz9+/Eg2yLbgD3NQolvww/c479VQDVgtchYJi34rRc7iwL7fv39/AVjyqLdmihw8Pz8X29byslS8ETvEBvTnz58nutTaL12nCrBwDEUOisZFOaaM/CQ9dKFpunCwz499G5ruMNhMzj0eQtfsQrufdxqlbR0HoFo5DyDLvxxjP03oDvP2s2/7f5yf9nfaLmL/+/fvISfMBSkKEoCeBu39fKG/wx9lNG1om8wfKJxqYx9a1ojUxaFrKmokHzPEBHH49etX+PjxY3j79m3UpmPU28Y+Bl+Sf3DUhr2tbxlj/ktruAqwcCgHSgQDsimnNejaP0pi0N+1+3AEuJMBscmeBxru9cOHD+Hdu3cBVBt5OV9H4GqR70Ob2yt8OY7yEaj9ARQnv5zsce2+eAhMy9cxcjIN2mV8AXijYtW8D0WdAuwYvyhep9jmQco4IE4E6JcvX06gRVzAhw5kjCUp51oa1e2wZ+4BcYxzaAGaGs+tiSrATjkyJT+eb0gGHIkbnD8nDuMTWBGI3G1sgrRv6wGLJPHJi8QpULUPGQAL3dQhdHlrmFcD9h4VkxThsH+bXDtmEeTpdMz7ubyFbfFhfH9fALYmNM1uuCFPeU4ccD2YJVZSF03XhXYXgyHlT4qHJy8OLcQrJQdgP336FA6Hw9Byurm9s653Zo/Q10MqNbaAVf3UfpcBrD1NCzfo6EC+WFOOTPEAQr4EWOwpQNIO9TmOqd5KZp8rAyx9jfeve763Lz1o+fmAorU5HgvZALZt+88ogAmvLwA9OgzVj3QfgEWD/7xZQZl7AJbfsYhV6YBL7X2M6/nQ5Svx2F9KCsDRz36vsT3MN6+Q4YAffVsEsLgJccr2J1ETur29hWIH4Mh4anFemtrkjwEcnQSPAGTSkBwmLTWH+ilZ/2LI3O4pwJobpen25vl0TnYiQen1j8MzzsrhF/de8m+cNxOw1b70BRjnsQ3dANgRnLaQx73FOQT/VBszQEvAIi4Ap37Dwh54+LblmtBD41hpDLDLvUFXdU57NfGK4zG+PPgKVYBz7d5O/8IoAhYJhzNfv34Nnz9/PlH0baMMutkiQSHzFwpa1OZEygJQ58wobDrNIuZ4ipb1tRgNcC/2ORbmuKYFqB2ni2Gcnwbst2/fwps3bwIo+/BD51327+0LfevjsJ8CLOJXLPJ5T2MCFn6jD4CisU7nALbudyv5/QF4CkgFNwEbAVoOJny+ABtFwAKAAOP3798vQGpBCx3o6mnF4rDfSm0nN2wBsJGDF0CYLmquD6oARLI4tpSJJF9toD/6YoDKQ+Rin8sAFrcCwMr9Y68pnvqzjC9nwJ7zPBbpGJf6PON5nQeE+sa+AhbfsgQsb9FZgGWOExSxVDD2AIz3Gvl5sjHGgICNbWiN9798mwRsCoAMhqXQzeqjkDM3LG/VMZnYKBItoEidvLSXCKDdmwIQff4CinzlYS751k4/NnvT9R8EWOwXt6rdrwWxlV/E+ea+8Ibti2/IsTmoh0I18esPFRb+9YAFQAFOPolBEYtawOL7Mrr9Sq+AU13GfmOthwEWp7ie5CyCGsB2OImGGxZOIRA9MIdkomiQ0J2cWiaRXLOWEpDYdw6M5EOHgE7bvx6wKMB7fMNi73jh6H6nbthe996+XBYub5Movzwoojz3t8r429czYKHTdJGv6rf29YZFPNC0fmsBO9g8dKFN/N3AvW/Yvm4O4T/LHmm/mMX+kAAAAABJRU5ErkJggg==

hotfox 发表于 2020-11-27 10:13:00

155773470086482 发表于 2020-11-27 09:47
但是看你这个逻辑,不是直接就可以写成D=A-B-C吗?B为空或不为空不影响结果 ...

“-”只是连接符,不是减号,不计算

155773470086482 发表于 2020-11-27 11:39:24

那还是填表公式-值变化时事件-赋值-用字符串函数
页: [1]
查看完整版本: 字符串连接问题?